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A possible ccnnection of dual models with conventional field lheories 

is Presentrd. 

In ithis sho:~r note, we pPesent ,111 interprc:lation of dual resonRncf2 modeis 

whicil may el~jr:ii 1l:eir re1.ati.w~ to cowcntiunal models. 

To each J’Oi!it (Xp’ pi*) in 1. orentz phase space wc associate an internal 

space in whi~ch motion is generated by the Hamilto:lian function’ 

H = ; 
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TL 
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in v;hjch the EI~cquencies obe) 

0 m+l -?rrl 
=o m= 1,2,.... 

and 

[ q(m) in) /,I =[Pp’ 
(13) p (;.) ] = o ; [ Jr), p (;) ] = ig 

PO 
& mn; (2) 

here g 
PO‘ 

= (-1, -+l, +I, +1) is the l~oren!z metric 

This inlemal system 1135 a total monlenturn 

p = P z p (m) n,::; I-1 
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\Vc call thcsc gcncralizrd mornci~ium and cotrrdinatf, respectively, 

and con:;i de r t1irm a:; gencrali t’ ~a ICXIS of tllc usual canonical coordinates 

on ~/l:i~~h convr:nti.onnl theories arc ccnctructcd 

The Iicisenbcrg equations of motion 

VT) = c 
i.rH 

pc 

- i r I-I 
(5a) 

allow ES lo introduce the var;ahle T which acts as a time vnrkisle for the 

internal system. l;or the pllysical lilnit o. + 0, ho\:levc:~, all the frequen- 

cies of the internals normal modes becorn e integer mul.tiplc of o, thereby 

enabling us to consider T as a cyclic variable. The interval 

-T<TC+T 
w w (6) 

defines the fundarnentzl cycle of the j.ntclwal system. 

Then, all phy~sical quaniities are assurncd to 13~ Ihe average over the 

fundamental r:~clc of the systeln of their neneralized counterparts in the 

internal space. The average of an op?rator A(T) is given by 
,I0 

< A(T)> ‘-- 2F 
f 

dr A(T) 
J 
-nlo 

It then follows that 

< PJ’) > = p (0) z 
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arc t!~lci physiczi momcntii :ll;ci cool.Cii!:zttl.s, rcspectivcily, 

T!lis prwedure can be carricci uver to products of operators v;ith the 

added provLso ;,:lnt thccc lx normal nrdcred, except for 1.l:c Iuwest 11;ode. 

IT~?nce, II:? square ,-,,RSS of the physical s’ystrm is gj~ven according to 

the correspondence principle 

2 
l’,Pp 

= <P (T) ><PJr) > 
F 

---a : CP (T), : (9) 

so that tile ~~ncr2lizntion of t!?: I<lei.n-Gordon cqs:;,ti~on for a dual system is 

{ 5P2(T) > : + m2} 6=0 (10) 

Use of the iIcisenbcrg equations of motion and of the definition of the 

zT,rQx”ge yicldc, j.n the p!~~y:irnl limit 0 
0 

-* 0, 

m 

IP~P~+-w .a c 
lla(n) t W -t- 1n2} 4 = 0 

n1;i 
(11) 

2 
which is the vvcll-known form found in the Vcnezi,Bno model Here a(F) ’ 

and a(;‘< 2rc the creati~on ;:nd nnnihilatic;n operators, respectively. ThCSe 

arc c:i~ven by 

a(1l) 1~: 1 lis;- ,(I0 _ 2 1) (n) 
P d2 i ‘1 P tic p 

II 1 

a(“) = 1 
P 

,,* 5 q(;' + i 
i 

(n) 
q" P 3 

12a) 

12b) 

The solutions of the gvnrl,alked Klein-Gordon equation will in general 

con;:in ~h~~~sl. stat.rs wllicll have ken introduced I.JJ- the IAorentz metric. 
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\$r, :Illl:jt t!lcrcf~~l-c csi:~b]ish suhsidiarg condilicms that will insurc their 

absence in tl;e soiut~ions of Eq. (IO). These a-e conventionally written as 

p a(*‘) 1 (, > =O n = 1,2,... (13) 
11 11 

which cm !x rewritten ;LS 

<I’ (T) ><e 
iwn X 

=o n=1,2,... (14) 
P 

~{owcvel-~ according to our correspondence principle, these become 

io X 
:< e I1 Pp(x)Pp(x)> : Id> =o II= 1,2,... (15) 

In ier~ns ~,f creation x:d annihilation operz.l:ors, they read, i.n the physical 

limit ~3 o -f 0, 

c 

I 
ica ppll(;) + CL; yf $)= a(l ). a(” ” ) _ 

e =I 
0 

- \G c 
\’ Q (I --II) ’ a (! )t 

. a (Q+n) I$)> = o 

P=l 1 
n= 1,2,... 

(16) 

‘1~1~~s~ ~lre seen t.o reduce to the t~zquations Eoumd to hold by Virasoro3 in the 

special cc..cc of unit interc.cpt in the :‘ene.zimo model. 

Other opclators of i~ntcrest in the classification of the solutions of the 

gencrali;<cd Klci~n-Gordon eq!lation arr the l..o.rentz generators which we 

obtain 12;~ means of the corrt:ipondencc principle . 

c s ‘C 
p I’pa p*“T 

<c,, (T)> <P 
p,,‘,‘” p 

(,(T)> - :c <Q (TIPOfT)> :(17) 
I”llpo- p 

Their cxplicil. cxprcssilon is cnsily derived” 
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-iellvpU [ iXppD zi a(;‘+ a(zj (18) 

We recognize in this expression the orbital and spin parts, which insures 

us that the solutions of the Klein-Gordm equation can have arbitrarily high 

integral spin. 

Although it is difficult to construct the most general solutions of our 

Klein-Gordon equation which obey the su,bsidiary conditibns (15), it is clear, 

in analogy with the usual free field theories, that these should be expressed 

in terms of the super plane waves 

iP (A)’ Qwb’) 
e‘ ’ 

since 

[ Qp(A), Ppb’) ] = $g 
Pi-r 

[ ++)+ I) (19) 

We point out, however, that Q’s do not commute.together at different ifs, 

which renders the solution of (10) difficult. 
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5 
The .Eorm of t:he three Regpon vcrtcx obtained through factorization 

of the Venezj.ano amplitude points out to a system Ian i~nteraction of t,he form 

{ :<P2(T) > : +rn2: 6= xcj2 (20) 

The Veneziano ampli:nde woald then be the Born tern1 of this new field 

t,heory in the case of scalar external states. 

The author wishes to thank Professor Y. Kamlsu for his rcadi.ng of the 

manuscript. He also found discussions with Drs. L. Clavelli, S. Rlatsuda 

and II. Weinprtcn enlightening. 
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